Stochastic Models for Resource Markets

AMSI Workshop, July 2009
Energy Edge

- Energy Edge assists clients with financial risk management for exposures to commodities:
 - Electricity
 - Gas and coal
 - Carbon
 - Water

- Activities
 - Advisory Services
 - Quantitative Analysis
 - System Development
Electricity

• Optimal portfolio construction to hedge exposures to the National Electricity Market

• Pricing proposed or existing derivative contracts

• New power station viability studies
Gas and Coal

• Strategies for gas fired power stations to run with a constrained supply of gas

• Value of facilities to temporarily store gas

• Decision support for a (coal mine, generator) pairing to burn coal or sell it
Carbon

• How will the CPRS impact market prices for electricity

• Estimating the change in merit order for the generation fleet with a cost of carbon

• Constructing an optimal hedge for carbon risk mitigation under cash flow constraints
Water

• Contract management for purchase and sale of potable water in a regulated urban water network

• The impact of water restrictions on the electricity markets

• How to most profitably run a generator with a limited supply of cooling water
Point of commonality

• *Uncertainty*
 + Price risk
 + Volume risk
 + Counterparty risk
 + Regulatory risk
 + Behavioural risk
 + Weather risk

= Financial risk measures
Overview

• Three-part workshop
 – Part 1: Stochastic models
 • Describing and modelling the uncertainty
 – Part 2: Connection between electricity and water
 • Supply and demand influences
 – Part 3: Stochastic dynamic programming
 • Optimal management of a limited resource
Overview: Stochastic models

• Identify sources of uncertainty and illustrate tools for modelling
• Key topics:
 – Stochastic processes
 – Diffusion process
 – Poisson processes
 – Markov chains

Description, solution, simulation

For modelling continuously variable quantities, like consumer demand

For modelling shock events, like price spikes and plant failure

For more general modelling of time-varying phenomenon, like electricity spot price
Stochastic process

- A family of random variables X_t, where t is a parameter running over an index set (time).
- Distinguished by their state space (range of X), index set T and dependencies between X_t.
- Continuous processes
 - Continuous $\{t\}$
- Discrete processes
 - Discrete $\{t\}$
Electricity demand

- Electricity consumption levels pose a risk for market players:
 - Generation production levels to meet demand
 - Retailers’ exposures on consumption levels
- Demand is a continuously varying quantity
 - Amenable to modelling by a *stochastic differential equation* to describe a *diffusion process*.
- What are the characteristics to capture?
The National Electricity Market

• To put in context, we give a description of the wholesale electricity market (NEM)
Place of the Electricity Market

- Weather markets
 - Water market, weather derivatives
- Suppliers
- Electricity markets
 - Financial
 - Physical
- Consumers
- Commodity markets
 - Coal market
 - Gas market
 - Carbon market
 - Environmental markets

© Energy Edge 2009
Physical Infrastructure

-6% internal

-9% transmission

-6% distribution

Demand is measured here

© Energy Edge 2009
NEM

• The “pool” market
• Wholesale market for electricity
• Divided into half-hourly trading intervals
 – 48 observations per day for price, demand
• Demand is always met by supply in real time
• Prices are continually reset according to supply/demand balance
Demand Modeling

• The characteristics of consumer demand
• Time series of demand data for, say, QLD
• Relatively exogenous
• Limited demand side response
• Aggregation of different user types:
 – Industrial
 – Commercial
 – Domestic
Large time scale
Monthly average demand

![Graph showing monthly average demand over time]
Randomness over the range
Daily maximum demand
Daily Variation

10 Jan 2008 to 10 Feb 2008

10 Jun 2008 to 10 Jul 2008
Systematic diurnal pattern
Stochastic differential equation

\[dS = a(t,S) \, dt + b(t,S) \, dW \]

That is,

• Over time step \(dt \), the price \(S \) moves by a small amount \(dS \) which is a random amount \(b(t,S) \, dW \). Here \(b \) is a volatility parameter.

• For modelling, \(dW \) is a normally distributed random variable.

\[S(\text{next}) = S(\text{current}) + a \times dt + b \times \sqrt{dt} \times N(0,1) \]

• We can generate a normal random variable by:

\[N(0,1) = \text{normsinv}(\text{rand}()) \]
Development of the SDE

\[dS = a(t,S) \, dt + b(t,S) \, dW \]

Let \(W_t \) be a Brownian motion path.

Omit the references to probability.

What is a Brownian motion:

- Continuous,
- Nowhere smooth,
- Unbounded variation
Brownian motion

• W_t is a Brownian motion if:
 – **Gaussian**: for each s and t, $W_{t+s} - W_s$ has a normal distribution, mean 0 and standard deviation \sqrt{t}
 – **Independent increments**: for each $0 \leq t_0 \leq t_1 \leq \ldots \leq t_n \{W_{t_j} - W_{t_{j-1}}\}$ are independent
 – **Continuity**: W_t is a continuous function
Sample trajectories
Simulation of a solution

\[dS = a(t,S) \, dt + b(t,S) \, dW \]

Euler method:

\[S(t+1) = S(t) + a(t,S(t)) \times dt + b(t,S(t)) \times dW \]
Relation to demand

\[dS = dW, \ S(0) = 5,100 \]

\[dS = 200 \times dW, \ S(0) = 5,100 \]
Enforce the shape

Mean reverting SDE
\[dS = \theta (\mu - S) \, dt + b \, dW \]

Here, \(\theta \) is the mean reversion rate
\(\mu \) is the mean reversion level

Termed Ornstein–Uhlenbeck process.
OU Process

![Graph showing OU Process with three lines labeled S1, S2, and S3. The graph ranges from 0 to 8 on the x-axis and from 3500 to 7500 on the y-axis. The lines represent different scenarios or states over time.]
Impose daily shapes

Mean reverting SDE

\[dS = \theta (\mu - S) \, dt + b \, dW \]

Implement the mean reversion level as the mean daily shape for demand

\[dS = \theta (S_{\text{mean}} - S) \, dt + b \, dW \]
Reversion Level = Mean Daily Shape

\[\theta = 10, \quad b = 1000 \]
Ito’s lemma

• Mechanism for describing a new random process which is derived from another

• Primary process:
 \[dS = a(t,S) \, dt + b(t,S) \, dW \]

• Secondary process: \(V(t,S) \)
 \[
 dV = \frac{\partial V}{\partial t} \, dt + \frac{\partial V}{\partial S} \, dS + \frac{1}{2} b^2 \frac{\partial^2 V}{\partial S^2} \, dt
 \]
Solution to the OU

dS = \theta (\mu - S) \, dt + b \, dW

Put f = S \exp(\theta t);
Then df = \partial f/\partial t \, dt + \partial f/\partial S \, dS
+ \frac{1}{2} \partial^2 f/\partial S^2 \, dS

df = \theta S \exp(\theta t) \, dt + \exp(\theta t) \, dS

\[df = \theta S \exp(\theta t) \, dt + \exp(\theta t) \times [\theta (\mu - S) \, dt + b \, dW] \]

\[df = \theta \mu \exp(\theta t) \, dt + \exp(\theta t) \, b \, dW \]
Solution to the OU ctd

\[df = \theta \mu S \exp(\theta t) \, dt + \exp(\theta t) \, b \, dW \]

\[\int_0^t df = f(t) - f(0) \]

\[= \int_0^t \theta \mu \exp(\theta t) \, dt + \exp(\theta t) \, b \, dW \]

\[= \int_0^t \theta \mu \exp(\theta t) \, dt + \int_0^t \exp(\theta t) \, b \, dW \]

\[f(t) = f(0) + \int_0^t \theta \mu \exp(\theta t) \, dt \]

\[+ \int_0^t \exp(\theta t) \, b \, dW \]

\[f = S \exp(\theta t); \]
Solution to the OU

\[S(t) \exp(\theta t) = S(0) \]

\[+ \int_0^t \theta \mu \exp(\theta t) \, dt + \int_0^t \exp(\theta t) \, b \, dW \]

We were comparing the mean outcomes. Do this again.

\[\mathbb{E}(\int_0^t \exp(\theta t) \, b \, dW) = 0 \]

\[\mathbb{E}(S(t)) = S(0) \exp(-\theta t) \]

\[+ \exp(-\theta t) \int_0^t \theta \mu_t \exp(\theta t) \, dt \]

Now, if I want to have my simulated mean agree with the observed mean:
Calibrating the OU

\[E(S(t)) = \exp(-\theta t) \left[S(0) + \int_0^t \theta \mu_t \exp(\theta t) \, dt \right] \]

\[S_{\text{mean}} = \exp(-\theta t) \left[S(0) + \int_0^t \theta \mu_t \exp(\theta t) \, dt \right] \]

\[S_{\text{mean}} \exp(\theta t) - S(0) = \int_0^t \theta \mu_t \exp(\theta t) \, dt \]

Differentiate:

\[\mu_t = \left(\frac{dS_{\text{mean}}}{dt} - \theta S_{\text{mean}} \right) / \theta \]
Sample trajectory
Mean reversion level

\[\text{MEAN} = \frac{(dS_m/dt + \theta (S_m - S_0))}{\theta} \]
Multiple regions

- The demand is observed concurrently in multiple regions
- Strong correlation exists
- Accurate risk measurement requires incorporation of correlation
Correlation Illustrated
Inducing the correlation

\[dS_Q = a(t,S_Q) \, dt + b(t,S_Q) \, dW_Q \]
\[dS_N = a(t,S_N) \, dt + b(t,S_N) \, dW_N \]

We will make the random movements correlated:

\[dW_Q = \text{random draw} \]
\[W^* = \text{random draw (intermediate step)} \]
\[dW_N = \rho \, dW_Q + \sqrt{1-\rho^2} \, W^* \]
More complex correlation

![Graph showing complex correlations between nsw, qld, vic, sa]
Process

• Correlation array, volatility vector
• *Clean* the correlation array
 – (want a positive definite covariance matrix)

```
Correlation QLD-NSW = 0.9, Correlation NSW-VIC = 0.9,
Correlation QLD-VIC = 0
```

• Cholesky decomposition (L)
 – Correl = $L L^T$
• L * uncorrelated random numbers
 ➔ correlated random numbers